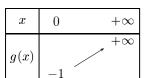
Correction: théorème des valeurs intermédiaires

www.bossetesmaths.com

Exercice 1 (Bac S - Nouvelle Calédonie nov. 2013)

 $g(x) = x^2 e^x - 1 \operatorname{sur} [0; +\infty[$

- 1) Pour tout réel $x \in [0; +\infty[, g'(x) = 2xe^x + x^2e^x = (2x + x^2)e^x = (2 + x)xe^x$. Pour tout $x \in [0; +\infty[, 2+x>0; x \ge 0 \text{ et } e^x > 0, \text{ donc } g'(x) \ge 0.$ Donc g est strictement croissante sur $[0; +\infty[$
- 2) * $g(0) = 0^2 e^0 1 = 0 1 = -1$.
 - * $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} e^x = +\infty$, donc par produit $\lim_{x \to +\infty} x^2 e^x = +\infty$ et en soustrayant 1 on a $\lim_{x \to +\infty} g(x) = +\infty$.



- La fonction g est dérivable donc continue et strictement croissante sur $[0; +\infty[$.
- On a g(0) = -1 et $\lim_{x \to +\infty} g(x) = +\infty$ donc $0 \in [g(0); +\infty[$.

le théorème intermédiaire, il existe un unique réel a appartenant à $[0; +\infty[$ tel que g(a) = 0

[0,703;0,704]

3) On obtient avec la calculatrice :

r	0,703	0.704		
			donc	a appartient à l'intervalle
g(x)	-0,0018	0,00205	L	

4) On en déduit le tableau de signes de g(x) sur $[0; +\infty[$:

x	0		a		$+\infty$
g(x)		=	0	+	

Exercice 2 (Bac S - France juin 2013)

 $f(x) = \frac{2 + 2\ln x}{x} \text{ sur }]0 ; +\infty[$ On admet que : $\lim_{x \to 0} f(x) = -\infty \text{ et } \lim_{x \to +\infty} f(x) = 0.$

1) $f = \frac{u}{v}$ avec $u(x) = 2 + 2\ln x$ et v(x) = x. $u'(x) = 0 + 2 \times \frac{1}{x} = \frac{2}{x}$ et v'(x) = 1. $f' = \frac{u'v - uv'}{v^2} \text{ donc, pour tout } x \in]0 ; +\infty[, f'(x) = \frac{\frac{2}{x} \times \cancel{x} - (2 + 2\ln x) \times 1}{x^2} = \frac{2 - 2 - 2\ln x}{x^2} = \frac{-2\ln x}{x^2}.$

x	() 1	$+\infty$
-2	-	- -	
$\ln x$		- 0 +	
x^2		+ +	
f'(x)		+ 0 -	
f(x)		$-\infty$ $\frac{2}{2}$	0

- Signe de f':
- * -2 > 0; * $\ln x > 0 \iff x > e^0 \iff x > 1$;
- * $x^2 > 0$ pour tout $x \in]0$; $+\infty[$.
- * D'après l'énoncé, $\lim_{x \to 0} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = 0$. * $f(1) = \frac{2 + 2 \ln 1}{1} = 2 + 2 \times 0 = 2$.
- **2**) La fonction *f* est dérivable donc continue et strictement croissante sur]0 ; 1].
 - On a $\lim_{x \to 0} f(x) = -\infty$ et f(1) = 2 donc $1 \in]-\infty$; f(1)].

D'après le théorème de la valeur intermédiaire, l'équation f(x) = 1 admet une unique solution α sur l'intervalle 0; 1

Exercice 3 (Bac S - Nouvelle Calédonie nov. 2012)

 $f(x) = 5\ln(x+3) - x \text{ sur } [0; +\infty[$ |. On admet que : $\lim_{x \to +\infty} f(x) = -\infty$.

1) Posons $g(x) = \ln(x+3)$. Alors $g = \ln u$ avec u(x) = x+3 et u'(x) = 1.

 $g' = \frac{u'}{u}$ donc, pour tout $x \in [0; +\infty[, g'(x) = \frac{1}{x+3}]$.

f(x) = 5g(x) - x donc, pour tout $x \in [0; +\infty[, f'(x) = 5g'(x) - 1 = 5 \times \frac{1}{x+3} - 1 = \frac{5}{x+3} - \frac{x+3}{x+3} = \frac{5-x-3}{x+3} = \frac{2-x}{x+3}$.

x	0		2		$+\infty$
2-x		+	0	_	(a = -1)
x+3		+		+	
f'(x)		+	0	_	
f(x)	$5 \ln 3$	5 lı	$n \cdot 5 - 2$	\	$-\infty$

- * x + 3 > 0 pour tout $x \in [0; +\infty[$. * $2 x = 0 \iff 2 = x \iff x = 2$. * $f(0) = 5\ln(0 + 3) 0 = 5\ln 3$.

 - * $f(2) = 5\ln(2+3) 2 = 5\ln 5 2$.
 - * D'après l'énoncé, $\lim_{x \to +\infty} f(x) = -\infty$.
- 2) La fonction f est dérivable donc continue et strictement croissante sur [0 ; 2].
 - On a $f(0) = 5 \ln 3 \approx 5,49$ et $f(2) = 5 \ln 5 2 \approx 6,05$ donc $0 \notin [f(0); f(2)]$.

Donc l'équation f(x) = 0 n'admet pas de solution dans [0; 2].

De plus:

- La fonction f est dérivable donc continue et strictement décroissante sur [2; $+\infty$ [.
- On a $f(2) = 5 \ln 5 2 \approx 6,05$ et $\lim_{x \to +\infty} f(x) = -\infty$ donc $0 \in]-\infty$; f(2)].

D'après le théorème de la valeur intermédiaire, l'équation f(x) = 0 admet une unique solution α dans $[2; +\infty[$

Conclusion: l'équation f(x) = 0 admet une unique solution α sur l'intervalle $[0; +\infty[$ (avec $\alpha \in [2; +\infty[)$

3) On obtient avec la calculatrice:

\boldsymbol{x}	14	15			
f(x)	0,16607	-0,5481			

donc α appartient à l'intervalle [14 ; 15]

Avec un pas de 0 01 ·

1	Tivee all pas ac 0,01.					
	x	14,23	14,24			
	f(x)	0,00326	-0,0038			

donc $\alpha \approx 14,23 \text{ à } 10^{-2} \text{ près}$

4) On en déduit le tableau de signes de f(x) sur $[0; +\infty[$:

x	0		α		$+\infty$
f(x)		+	0	_	

Exercice 4 (Bac ES - Liban mai 2013)

 $f(x) = 0,1xe^{0,1x} - e^{0,1x} - 20 \text{ sur } [5;60]$

1) Posons $g(x) = e^{0.1x}$. Alors $g = e^u$ avec u(x) = 0.1x et u'(x) = 0.1.

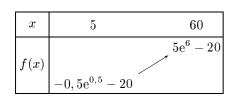
 $g' = u'e^u$ donc, pour tout $x \in [5; 60]$, $g'(x) = 0, 1e^{0,1x}$.

Ainsi, pour tout $x \in [5; 60]$, f(x) = 0, $1x \times g(x) - g(x) - 20$ donc f'(x) = 0, $1 \times g(x) + 0$, $1x \times g'(x) - g'(x)$

 $f'(x) = 0, 1e^{0.1x} + 0, 1x \times 0, 1e^{0.1x} - 0, 1e^{0.1x} = (0, 1 + 0, 01x - 0, 1)e^{0.1x} = 0, 01xe^{0.1x}$

Pour tout $x \in [5; 60]$, $f'(x) \ge 0$ donc la fonction f est strictement croissante sur [5; 60]

- 2) * $f(5) = 0.1 \times 5e^{0.1 \times 5} e^{0.1 \times 5} 20 = 0.5e^{0.5} e^{0.5} 20 = (0.5 1)e^{0.5} 20 = -0.5e^{0.5} 20$.
 - * $f(60) = 0, 1 \times 60e^{0,1 \times 60} e^{0,1 \times 60} 20 = 6e^6 e^6 20 = (6-1)e^6 20 = 5e^6 20.$



- La fonction f est dérivable donc continue et strictement croissante sur [5 ; 60].
- On a $f(5) = -0.5e^{0.5} 20 < 0$ et $f(60) = 5e^6 20 \approx 1997.14$ donc $0 \in [f(5); f(60)]$.

D'après le théorème de la valeur intermédiaire, l'équation f(x) = 0 possède une unique solution α dans [5; 60].

3) On obtient avec la calculatrice:

x	25	26	dona	$25 < \alpha < 26$ à l'unité près
f(x)	-1,726	1,542	done	25 < a < 20 a 1 unite pres

4) On en déduit le tableau de signes de f(x) sur [5 ; 60] :

x	5		α		60
f(x)		=	0	+	

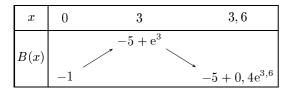
Exercice 5 (Bac ES - France juin 2013)

 $B(x) = -5 + (4 - x)e^x$ sur l'intervalle I = [0; 3, 6]

- 1) a) Montrer que pour tout réel x de l'intervalle I, on a : $B'(x) = 0 + (-1)e^x + (4-x)e^x = (-1+4-x)e^x = (3-x)e^x$.
 - **b)** * $3 x = 0 \iff 3 = x \iff x = 3$.
 - * Pour tout $x \in I$, $e^x > 0$.

x	0		3		3, 6
3-x		+	0	_	(a = -1)
e^x		+		+	
B'(x)		+	0	_	

c) On en déduit le tableau tableau de variations de la fonction B sur l'intervalle I:



- * $B(0) = -5 + (4 0)e^0 = -5 + 4 \times 1 = -5 + 4 = -1$.
- * $B(3) = -5 + (4 3)e^3 = -5 + e^3$.
- * $B(3,6) = -5 + (4-3,6)e^{3,6} = -5 + 0,4e^{3,6}$.
- **2)** a) La fonction B est dérivable donc continue et strictement croissante sur [0; 3].
 - On a B(0) = -1 et $B(3) = -5 + e^3 \approx 15,09$ donc $13 \in [B(0); B(3)]$.

D'après le théorème de la valeur intermédiaire, l'équation B(x) = 13 possède une unique solution x_1 dans [0; 3]. De plus :

- La fonction B est dérivable donc continue et strictement décroissante sur [3 ; 3,6].
- On a $B(3) = -5 + e^3 \approx 15,09$ et $B(3,6) = -5 + 0,4e^{3,6} \approx 9,64$ donc $13 \in [B(3,6); B(3)]$.

D'après le théorème de la valeur intermédiaire, l'équation B(x) = 13 possède une unique solution x_2 dans [3; 3, 6]

Conclusion : l'équation B(x) = 13 possède deux solutions x_1 et x_2 dans I (avec $x_1 \in [0; 3]$ et $x_2 \in [3; 3, 6]$

b) On obtient avec la calculatrice :

x	2,45	2,46	
B(x)	12,962	13,025	
donc	$x_1 \approx 2,46$ à	0,01 près	3

x		3,39	3,4	
B(x)		13,096	12,978	
donc $x_1 \approx 3.4 \text{ à } 0.01 \text{ près}$				