Correction: réunion et intersection d'intervalles

www.bossetesmaths.com

Exercice 1

a) Représentons les intervalles [0; 4] et [2; 6[sur une droite graduée :

 $\begin{array}{c|c}
\hline
0 & 2 & 4 & 6
\end{array}$ Alors $\begin{array}{c|c}
\hline
[0; 4] \cup [2; 6[=[0; 6[] \text{ et } [0; 4] \cap [2; 6[=[2; 4]].
\end{array}$

b) Représentons les intervalles] – 3 ; 5] et]1 ; 6[sur une droite graduée :

Alors $[-3; 5] \cup [1; 6] = -3; 6[$ et $[-3; 5] \cap [1; 6] = [1; 5]$.

c) Représentons les intervalles [2 ; $+\infty$ [et]1 ; 4] sur une droite graduée :

Alors $[2; +\infty[\cup]1; 4] =]1; +\infty[$ et $[2; +\infty[\cap]1; 4] = [2; 4]$

d) Représentons les intervalles [-2; 1] et]1; 3[sur une droite graduée :

Alors $[-2; 1] \cap]1; 3[= \emptyset | (car 1 \not\in]1; 3[) et | [-2; 1] \cup]1; 3[= [-2; 3] |$

 ${\bf e}) \ \ {\rm Représentons} \ {\rm les} \ {\rm intervalles} \]0 \ ; \ 2[\ {\rm et}\]2 \ ; \ 4] \ {\rm sur} \ {\rm une} \ {\rm droite} \ {\rm gradu\'ee} \ :$

Alors |]0 ; 2[∪]2 ; 4] n'est pas un intervalle et s'écrit donc tel quel |(car 2 n'appartient à aucun des deux intervalles donc il y a un "trou" en 2 dans la réunion des deux intervalles).

Et $| \]0 \ ; \ 2[\ \cap \]2 \ ; \ 4] = \emptyset | (car \ 2 \not\in \]0 \ ; \ 2[\ par \ exemple).$

Exercice 2

a) I = [-2; 1[et J = [0; 2]]

 $\begin{array}{c|c} \hline & & \\ \hline -2 & 0 & 1 & 2 \\ \hline \end{array} \rightarrow \text{Alors} \ \boxed{I \cup J = [-2; 2]} \ \text{et} \ \boxed{I \cap J = [0; 1[]}.$

Alors $I \cup J = [0; 5[$ (il n'y a pas de trou en $3 \operatorname{car} 3 \in J$) et $I \cap J = \emptyset$ (car $3 \notin I$).

d) I =]-2; $+\infty[$ et $J =]-\infty$; 4]: Alors $I \cup J =]-\infty$; $+\infty[=\mathbb{R}]$ et $I \cap J =]-2$;, 4].

e) $I = [-1; 4[\text{ et } J =]0; +\infty[:$

Alors $I \cup J = [-1; +\infty[$ et $I \cap J =]0; 4[$